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In recent years, the problem of determining 
coordinates of points when interpoint distances 
are given has claimed attention of statisticians 
in the field of psychological measurement. The 
problem arises from a practical standpoint because 
human subjects are frequently able to report simi- 
larities between stimuli when they are unable to 

describe characteristics of the stimuli. From 
judgments of proximities between stimuli are cal- 
culated the coordinates of stimulus points. These 
coordinates, after suitable rotation and transla- 
tion of axes, are in effect measurements of char- 
acteristics of the stimuli. The multidimensional 
distance scaling procedures of Torgerson (1952, 

1958) and of Shepard (1962a, 1962b) and Kruskal 
(1964a, 1964b) have sought solutions to systems 
of quadratic equations with many sets of roots. 

The problem of ascertaining the globally 

correct solution has not been resolved to the 
satisfaction of all concerned. Trying many dif- 

ferent solutions to find the one with minimum 
stress upon the inputted distances is one answer. 

Another is to use the principal components pro- 

cedure of Torgerson. Shepard (1974) expresses 
reservations about the adequacy of any existing 

procedures to furnish the globally correct solu- 

tion except by repeated trial and error to find 

that set of coordinates which most closely fit 
the interpoint distances. 

The present author has proposed a trigono- 

metric solution for obtaining point coordinates 
from exact interpoint distances (1976b). The 

formulas for calculating coordinates of points 

from inputted interpoint distances are given in 

Table 1 for 4 points. The pairs of numbers in 

parentheses indicate interpoint distances. The 

triads of numbers designate angles. The hinge 

of the angle is an italicised number. For di- 

hedral angles, the hinge involves more than one 

point. 

Table 1 

Generalizing the formulas in Table 1 to 
larger numbers of points in more than 3 dimensions, 

letting C be the Mth coordinate of the Nth 

point, M'N M <(N -1), we have 

CM,N = (1N) sin(2 1 N) sin(3 12 N) 

sin(4 123 N)...cos(M 123..M -1 N). 

If M = N -1 for the last coordinate of the Nth 

point in the simplex, the terminal cosine term 

in the product is replaced by the sine of the 

same dihedral angle. 

Also we have, with L <M <N 

cos(M 123..L N) = [ cos(M 123..L -1 N) - 

cos(L 123..L -1 M) cos(L 123..L N)] 

/[sin(L 123..L -1 M) sin(L 123..L -1 N)] 

These formulas have been tested for randomly 

selected coordinates of 20 points in 14 

dimensions and have been found to be correct. 

Application to Fallible Data 

The formulas given can be directly applied 

to a network of error -free interpoint distances. 

The usual problem in scaling characteristics 

of stimuli is that the respondents give inaccu- 

rate proximity judgments which do not form an 

exact system. Depending upon which interpoint 

distances are used, different sets of coordinates 

result, if indeed any calculation at all is 

mathematically possible. 

A plausible procedure is to obtain exact 

solutions to alternative sets of points and then 

to average the resulting coordinates transformed 

to the same axes of orientation. A machine 

program was prepared which takes simplexes of 

COORDINATES FOR 4 POINTS IN 3 DIMENSIONS 

Point 

Coordinate 

1 2 3 

1 0 0 

2 (12) 0 

3 (13)cos(213) (13)sin(213) 

4 (14)cos(214) (14)sin(214)cos(3124) (14)sin(214)sin(3124) 
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points in all possible sets to calculate average 

coordinates from the different possible exact 

solutions. The program, TRIVCOR, is available. 

First is selected the largest simplex which 
can be formed from the points in the number of 

dimensions for which a solution is pursued. 
Then each possible simplex in that number of 

dimensions has its coordinates calculated and 
referred to the largest simplex for the axes 

on which the averaging of coordinates is done. 

Coordinates between -1.0 and 1.0 were ran- 
domly chosen for 8 points in 1, 2, 3, 4, and 5 

dimensions. The distances between the points were 

calculated and then degraded by adding error 

quantities whose absolute averages are respect- 

ively .1, .2, .4 and .8, in separate computations. 
The 4 levels of error for 5 different levels of 

dimensions were pursued in 20 different computa- 

tions to fit coordinates to simulated data. The 

coordinates obtained were then reconverted to 
interpoint distances whose errors are then com- 

pared with the original distances before their 

degradation by random errors. 

In some cases, the error degradation of the 
interpoint distances led to impossible configu- 

rations, such as one side of a triangle being 

greater than the sum of the other two sides. 

An adjustment computation was programmed and 

performed which modified the system of interpoint 
distances by small increments until a consistent 

set of distances was obtained. Starting with the 
largest interpoint distance, each set of 3 was 
tested for consistency with a tolerance of .01. 

If the tolerance condition was not met, the longer 
side was reduced by .005 and the shorter sides 
were increased by .0025 each. The consistency 
adjustment was repeated iteratively until a 
consistent system of all of the interpoint 
distances was obtained. If the distances are 
not consistent, the trigonometric calculation 
gives defective results. 

This consistent (but not exact) set of 
interpoint distances then formed the starting 
point for the calculation and averaging of sets 
of coordinates for all possible simplexes. With 
8 points, the number of simplexes is 28 for 1 

dimension, 56 for 2 dimensions, 70 for 3 dimen- 
sions, 56 for 4 dimensions, and 28 for 5 dimen- 
sions. These are the numbers of separate calcula- 
tions of coordinates made before averaging coor- 
dinates for the different numbers of dimensions. 

The results from the 20 different computa- 
tions are given in Table 2. The coordinates 

for interpoint distances with small random errors, 
of the order of 10 per cent, can be satisfactorily 
estimated for points in one or two dimensions. 
For larger errors or larger numbers of dimensions, 
the estimation of coordinates becomes unsatisfac- 
tory. 

Table 2 

AVERAGE ERRORS IN OUTPUTTED INTERPOINT DISTANCES RECOVERED FROM 

COORDINATES CALCULATED FROM DISTANCES BETWEEN RANDOM POINTS 

Number of 
dimensions 

Average error 
introduced 

in distances 
at random 

Average 
original 
distance 

Average 
error in 
inputted 
distance 

Average error 

in outputted 
distance 
recovered 

1 .10 

.20 

.79 

.52 

.09 

.19 

.09 

.13 

.40 .69 .35 .24 

.80 .71 .63 .58 

2 .10 1.16 .10 .12 

.20 1.08 .19 .20 

.40 1.09 .35 .23 

.80 1.16 .72 .32 

3 .10 

.20 

1.41 
1.27 

.10 

.15 

.66 

.12 

.40 1.06 .36 .56 

.80 1.44 .78 .48 

4 .10 

.20 

1.49 

1.86 

.10 

.20 

.26 

1.38 

.40 1.65 .50 1.67 

.80 1.43 .65 .62 

5 .10 

.20 

1.81 

1.88 

.10 

.23 

.43 

.89 

.40 2.04 .40 1.22 

.80 1.96 .75 1.64 
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Possibly the results from averaging coordi- 
nates of alternative simplexes can form the 
starting solution for the iterative solution of 
the quadratic system of equations. The most 
dependable procedure appears to be to use the 
method of descent described by the author (1976a). 

In this method of descent, the exact calculation 
of coordinates from alternative simplexes may be 
expected to improve the computational efficiency. 
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